

manuale istruzioni per l'uso e la manutenzione

instruction manual for use and maintenance **GB**

notice d'emploi et d'entretien FR

gebrauchs-und wartuungsanleitungen DE

manual de instrucciones de uso y mantenimiento

manual de instrucoes para uso e manutencao

podrecznik instrukcji obslugi i konserwacji

BLW

IT	MANUALE ISTRUZIONI BLW	2
EN	INSTRUCTION MANUAL FOR BLW	40
FR	NOTICE D'EMPLOI BLW	78
DE	BEDIENUNGSANLEITUNG BLW	116
ES	MANUAL DE INSTRUCCIONES BLW	154
PT	MANUAL DE INSTRUÇÕES BLW BLW	192
PL	INSTRUKCJA OBSŁUGI BMW	230

Inspection Cover.

Coperchio ispezione. Capot d'inspection. Inspektionsabdeckung. Tapa de inspección. Tampa de inspeção.

Non-return valve standard.

Valvola di non ritorno di serie. Clapet de non-retour de série Kontrollventil als Serie.

Válvula de retención de serie. Válvula antirretorno de série

Flow sections designed to minimize load losses and heating.

Sezioni di passaggio studiate per minimizzare perdite di carico e riscaldamento.

Sections de passage étudiées pour minimiser les pertes de charge et le réchauffement.

Die Abschnitte wurden so ausgelegt, dass der Druckverlust und die Gefahr der Überhitzung minimiert werden.

Secciones de paso estudiadas para

minimizar pérdidas de carga y calentamiento.

Secções de passagem estudadas para minimizar perdas de carga e aquecimento.

Piston ring and shaft lip seals to prevent oil leakage.

Tenute a labirinto con segmenti e la tenuta a labbro sull'albero impediscono la fuoriuscita dell'olio.

Les joints en labyrinthe avec segments et le joint à lèvre sur l'arbre empêchent les fuites d'huile.

Kolbenring- und Wellenlippendichtungen verhindern das Austreten von Öl.

Los sellos laberínticos con segmentos y el sello labial en el eje evitan las fugas de aceite.

Vedantes de labirinto com segmentos e de vedantes de lábio no eixo impedem a fuga do óleo.

Air injection cooled - Rotary Lobe pump

Predisposition for overpressure valve.

Predisposizione per valvola di sovrappressione. Predisposition pour soupape de surpression Veranlagung Für Überdruckventil. Predisposicion para valula de sobrepresion. Instalação para válvula de sobrepressão.

Sistema raffreddamento ad iniezione di aria ottimizzato per contenimento temperatura: funzionamento in continuo. Système de refroidissement par injection d'air optimisé pour le limiter la température: fonctionnement continu. Die Luftabkühlung sorgt für niedrige Temperaturen: Dauerbetrieb. Sistema enfriamiento de inyección de aire optimizado para retención de temperaturas: funcionamiento continuo. Sistema de arrefecimento por injeção de ar otimizado para contenção da temperatura: funcionamento em contínuo.

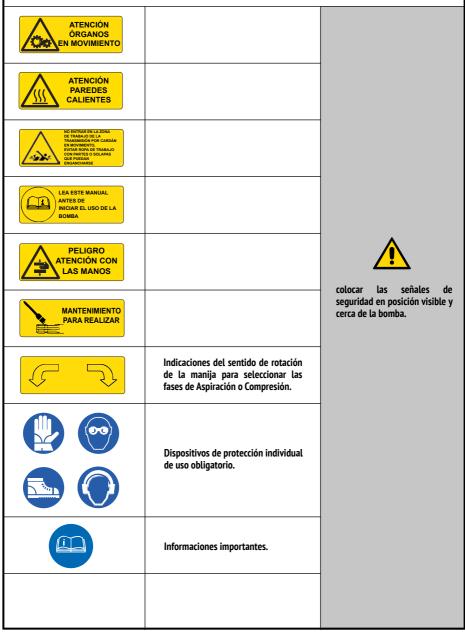
Non-return valve standard

Valvola di non ritorno di serie Clapet de non-retour de série Kontrollventil als Serie Válvula de retención de serie Válvula antirretorno de série

VERSIONS

BLW / P

BLW / PM


BLW / H

BLW / HC

ES

SEÑALES DE SEGURIDAD OBLIGATORIAS QUE EL FABRICANTE DEL EQUIPO DEBE PONER EN EL PUESTO DE TRABAJO Y ALREDEDOR DE LA BOMBA DE VACÍO/PRESIÓN POR PALETAS BLW.

CONDICIONES Y LÍMITES DE USO - LISTA DE PELIGROS

La instalación debe ser conforme, para los países del Mercado Común, a la directiva 2006/42/CE y sucesivas modificaciones, mientras que para otros países debe ser conforme a las Normativas locales en materia de seguridad.

Esta bomba de vacío/presión por paletas ha sido diseñada con la función de crear un vacío o una presión en el interior de un depósito conectado a ella.

En el interior de la bomba de vacío/presión por paletas no deben entrar, en ningún caso, líquidos, polvos o materiales sólidos de cualquier género porque podrían provocar su rotura. Es necesario, por lo tanto, dotar el equipo con válvulas de seguridad de sobrepresión y con un sistema de filtración adecuado.

Cualquier otro uso de la bomba de vacío/presión de paletas, excluyendo lo citado anteriormente, se considera absolutamente prohibido, no previsto por el fabricante y por tanto, de alto riesgo. No usar la bomba de vacío/presión de paletas para mover líquidos o materiales inflamables y/o explosivos o para materiales que liberen qas inflamable.

No utilizar la bomba de vacío/presión de paletas en atmósferas potencialmente explosivas. No quitar nunca las protecciones predispuestas en la bomba y verificar su estado cada vez que se usa la maquina.

Todos los trabajos deben ser realizados con la máquina parada y por personal cualificado. No se permite que personal no cualificado trabaje en o cerca de la bomba de vacío/presión de paletas.

Battioni Pagani® no se hace responsable de los inconvenientes, roturas y accidentes debidos a la no aplicación de las instrucciones del manual, al incumplimiento de la normativa vigente y a la no aplicación de la diligencia debida durante las operaciones de maniobra, mantenimiento o reparación, aunque no se mencionen expresamente en este manual.

El incumplimiento de las prescripciones contenidas en el presente manual puede conllevar los siguientes peligros:

- Peligro de aplastamiento causado por la masa de la bomba de vacío/presión por paletas durante el desplazamiento y el transporte;
- Peligro de enredo en los órganos de transmisión si se quitan las protecciones adecuadas (evitar ropa con mangas anchas, corbatas, brazaletes, collares, etc.);
- Peligros de naturaleza térmica debidos a las temperaturas que alcanza la pompa bomba de vacío/presión por paletas;
- Peligro acústico debido al ruido producido si faltan los medios personales de protección;
- Peligro de ruptura para el operador en fase de prueba con tubos de aspiración y salida separados de la bomba de vacío/presión por paletas
- Peligro de proyección de materiales sólidos y líquidos en caso de grave rotura de la centrífuga, de la bomba de vacío/presión por paletas.

Sumario

Premisa	158
Garantía	159
▶ 1.0 - Informaciones generales	160
1.1 - Descripción general	160
1.2 - Versiones BLW	160
1.3 - Datos técnicos	162
1.4 - Sentido de rotación	164
1.5 - posición de los tapones	164
1.6 - límites de uso	165
1.7 - Dimensiones de ocupación	166
1.8 - Placa de identificación	168
2.0 - Embalaje, almacenamiento, movilización y transporte	169
2.1 - Advertencias generales para el usuario y el operador	169
2.2 - Embalaje	169
2.3 - Almacenamiento	169
2.4 - Movilización y transporte	170
3.0 - Instalación	171
3.1 - Línea vacío/presión	171
3.2 - Línea de enfriamiento Ballast	171
3.3 - Versión SC	171
3.4 - Esquema de instalación	172
3.5 - Procedimiento de instalación	173
3.6 - Esquema hidráulico BLW/H/HC	176
3.7 - Instrucciones de uso y mantenimiento del motor hidráulico	177
3.8 - Acoplamiento junta elástica/motor hidráulico	179
▶ 4.0 - Prueba y rodaje	180
4.1 - Prueba	180

5.0) - Arranque, funcionamiento, parada	180
	5.1 - Arranque	180
	5.2 - Controles diarios a realizar	181
	5.3 - Precauciones de uso	181
	5.4 - Dispositivos de mando	182
6.0) - Mantenimiento	183
	6.1 - Mantenimiento ordinario/frecuencia	183
	6.2 - Lubricantes sugeridos para la lubricación	184
	6.3 - Inspección del nivel de aceite	184
	6.4 - Relleno aceite	184
	6.5 - Sustitución del aceite	184
	6.6 - Mantenimiento extraordinario	186
	6.7 - Recambios recomendados	186
	6.8 - Desinstalación bomba BLW	186
7.0	- Limpieza	187
	7.1 - Lavado del cuerpo	187
8.0) - Desmontaje y montaje	188
	8.1 - Desmontaje	188
	8.2 - Desmontaje del cárter trasero	188
	8.3 - Desmontaje del cárter trasero	188
	8.4 - Montaje	189
	8.5 - Montaje del cárter delantero	189
	8.6 - Montaje del cárter trasero	189
9.0) - Mal funcionamiento/daño/avería	190
10	.0 - Asistencia técnica	191
11	.0 - Puesta fuera de servicio y desguace	191

PREMISA

Las bombas de vacío/presión por paletas Battioni Pagani® están diseñadas y construidas respetando las normativas comunitarias en materia de seguridad y son objeto de la valoración de riesgos según la norma **UNI EN ISO 12100:2010**; en particular son conformes a la directiva 2006/42/CE y sucesivas modificaciones e integraciones.

La bomba de vacío/presión por paletas en objeto se configura en conformidad con la definición de la directiva máquinas 2006/42/CE como máquina y lleva la marca CE en la placa de identificación. Por otra parte se puntualiza, con relación a su uso y al objeto del suministro que prevé la instalación a cargo del comprador (sin fuerza motriz), que Battioni Pagani® declina cualquier responsabilidad como consecuencia del incumplimiento de las prescripciones presentadas en el manual de uso y mantenimiento.

El presente manual contiene la Declaración de conformidad CE y todas las indicaciones necesarias para los usuarios y para los fabricantes de instalaciones para utilizar nuestros productos con seguridad; por este motivo el manual siempre se debe conservar en cercanías de la bomba de vacío/presión por paletas BLW . Es necesario leer cuidadosamente las instrucciones de este manual antes de proceder con cualquier operación con y sobre la bomba de vacío/presión de paletas BLW .

Este símbolo de peligro en el manual, quiere decir que se proporcionan instrucciones importantes relativas a la seguridad. El operador es el primer destinatario de estas informaciones y tiene la responsabilidad de cumplir con ellas en primera persona, y también deberán hacerlo las personas expuestas a los riesgos relacionados con la utilización.

Las descripciones y las ilustraciones de este manual son proporcionadas a título simplemente indicativo. La firma constructora se reserva el derecho de efectuar cualquier modificación en cualquier momento.

GARANTÍA

Cuando reciba la bomba de vacío /presión por paletas verifique que no falta ninguna parte.

Posibles anomalías y faltas deberán ser reclamadas antes de 8 días a partir de la recepción de la misma.

La firma fabricante garantiza que la mercancía vendida está libre de fallos y se obliga solo si eventuales fallos son claramente atribuibles al proceso constructivo o a los materiales empleados, a reparar o, a su criterio, a sustituir las piezas defectuosas. Serán, en cualquier caso, a total cargo del Cliente, la mano de obra, los gastos de viaje, de transporte y eventuales gastos arancelarios. El vendedor no estará obligado al resarcimiento de los daños salvo en caso de dolo o culpa grave.

Se excluyen de la garantía las partes sujetas al desgaste normal. Cesa cualquier garantía en el caso que:

- Los defectos que deriven de accidentes o de evidente descuido o negligencia por parte del Cliente.
- Las partes hayan sido modificadas, reparadas o montadas por personas no autorizadas por el vendedor.
- Las averías o roturas hayan sido causadas por empleo inadecuado o sometidos a prestaciones superiores a las previstas por el vendedor.
- Cuando el Cliente no haya cumplido puntualmente con las obligaciones de pago contractuales.

El Cliente pierde el derecho de garantía si no denuncia los vicios al vendedor en un plazo de 8 días a contar desde que estos se han detectado, como excepción al art. 1512 del C.C. El Vendedor se reserva la posibilidad de cambiar o mejorar sus productos sin obligación de cambiar o mejorar las unidades previamente producidas y/o entregadas.

El Vendedor no es responsable de los accidentes ni de los efectos que tales accidentes provoquen à las persones o a las cosas por defecto de materiales y/o de fabricación.

Gracias por haber elegido Battioni Pagani®.

▶ 1.0 - INFORMACIONES GENERALES

1.1 - Descripción general

La bomba BLW es una bomba de vacío/presión, volumétrica de paletas trilobuladas adecuada para bombear aire.

Gracias al sistema de enfriamiento por invección de aire llamado Ballast, es adecuada para trabajar en condiciones de alto vacío (-0.9bar).

La bomba está equipada con tres conexiones: la primera se conecta a la línea de vacío o presión, la segunda se conecta a la atmósfera a través de un silenciador, y la tercera se conecta al sistema de enfriamiento Ballast, también a través de un silenciador.

El bombeo de aire se obtiene mediante la rotación de dos rotores de perfil conjugado que giran en sentido contrario entre sí dentro de un cuerpo que los contiene. El aire en aspiración se atrapa en una cámara formada por el cuerpo y los rotores, y gracias a la precisa forma y diseño de estos, se canaliza hacia el escape sin contactos ni rozamientos de manera eficiente. No se requiere ni sistema de refrigeración ni lubricación en la zona de bombeo; el aire descargado a la atmósfera está libre de aceite o contaminantes. La bomba BLW está equipada con un colector, montado en la parte superior del cuerpo, con una válvula de 4 vías y una válvula unidireccional. Girando adecuadamente la palanca de la válvula de 4 vías. es posible invertir el flujo de aire bombeado; la válvula unidireccional sirve para mantener el vacío en la cisterna y evitar la contra-rotación de la bomba cuando se detiene el motor.

1.2 - Versiones BLW

La bomba de vacío/presión por paletas BLW está disponible en las siguientes versiones:

VERSIÓN BLW / P | Para aplicación de polea La toma de fuerza es accionada a través de

una polea.

La versión es reconocible por la placa de identificación con las letras:

TRANSMISIÓN DE POI FA

| Para aplicación de polea con eje superior VERSIÓN BLW / P-AS

estándar

La toma de fuerza es accionada a través de una polea.

La versión es reconocible por la placa de identificación con las letras:

P-AS

TRANSMISIÓN DE POLEA

VERSIÓN BLW/PM | Para aplicación de polea

La toma de fuerza es accionada a través de una polea.

La versión es reconocible por la caja multiplicadora y la toma de fuerza con un árbol liso y una lengüeta ubicada en la parte frontal del soplador, así como por la placa de identificación con las letras:

PM TRANSMISIÓN DE POLEA

VERSIÓN BLW / HC | Con motor hidráulico con pistones integrado y compacto

La toma de fuerza es accionada a través de un motor hidráulico con pistones.

Se reconoce por el soporte del motor hidráulico colocado en la parte delantera y por la placa de identificación con las letras:

TRANSMISIÓN HIDRÁULICA COMPACTA

VERSIÓN BLW / H | Con motor hidráulico con engranajes externos y junta elástica

La toma de fuerza es accionada a través de un motor hidráulico con engranajes.

La versión se reconoce por el soporte del motor hidráulico colocado en la parte delantera y por la placa de identificación con la letra:

TRANSMISIÓN HIDRÁUI ICA

VERSIÓN BLW/P - PM - H/SC | Sin colector

La versión SC es reconocible por el hecho de que la bomba no tiene el colector instalado y por la placa de identificación con las letras:

SC SIN COLECTOR

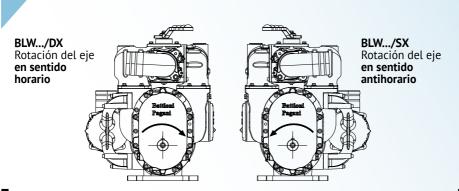
1.3 - Datos técnicos

		MÍN/MÁX	VIII AAI				,	VACUUM							
MODELO	OG*	VELOCI-	VELOCI- DAD	7	30 %		60 %			80 %			MAX VA	ШМ	
MODELO	δο	DAD** (RPM)	(RPM)	m³/h	cfm	kw	m³/h	cfm	kw	m³/h	cfm	kw	bar	kw	
		(16111)	2500	366	215	5	276	162	8	82	48	10	-0,8	10	
	875 m ³ /h		3000	444	261	6	373	220	10	169	100	13	-0,85	13	
BLW140	14600 L/min	2000/5000	3500	510	300	7	449	264	11	257	151	14	-0,87	15	
P/H/HC	514 cfm		4000	570	335	8	522	307	13	345	203	16	-0,88	18	
			4800	672	396	11	618	364	16	485	285	20	-0,9	22	
			2000	568	335	7	494	291	13	200	117	17	-0,8	17	
DI WO10	1575 m³/h		2400	719	423	9	561	330	16	350	206	21	-0,82	21	
BLW210 P/H/HC	26250 L/min 930 cfm	1800/4200	2800	870	512	11	712	419	20	501	295	25	-0,85	26	
r/n/nC	750 (1111		3200	1021	601	13	863	508	23	652	384	29	-0,87	31	
			3600	1171	689	16	1014	597	26	803	472	33	-0,9	36	
			2000	765	450	10	579	341	17	258	152	22	-0,8	22	
BLW270	2060 m ³ /h		2400	961	566	12	775	456	22	407	239	28	-0,82	29	
P/H/HC	34400 l/min 1213 cfm	1800/4200	2800	1158	681	15	972	572	26	543	320	33	-0,85	36	
r/II/IIC	1215 (1111		3200	1354	797	19	1168	688	31	800	471	39	-0,87	43	
			3600	1529	900	23	1365	803	37	996	586	45	-0,9	50	
			2000	904	532	12	604	356	21	330	194	28	-0,82	28	
BLW300	2110 m³/h		2400	1145	674	15	835	491	26	421	248	34	-0,86	36	
P/H/HC	35150 l/min 1242 cfm	1500/3800	2800	1359	800	19	1035	609	32	621	366	40	-0,88	44	
r/n/nc	12 12 (1111		3200	1559	918	24	1173	690	39	849	500	47	-0,89	51	
			3600	1808	1064	29	1449	853	45	1056	621	54	-0,91	60	
			2000	1104	650	16	762	449	27	138	81	35	-0,82	36	
BLW400	2712 m³/h		2400	1415	833	20	1035	609	35	483	284	43	-0,86	45	
P/H/HC	45170 l/min 1595 cfm	1500/3800	2800	1674	985	26	1323	779	42	745	439	52	-0,88	55	
1/11/110			3200	2029	1194	33	1739	1023	50	1277	751	62	-0,91	67	
			3600	2245	1322	40	1974	1162	56	1615	950	71	-0,93	78	
	45.40 3.0		1600	1932	1137	25	1173	690	44	690	406	56	-0,82	58	
BLW750	4540 m³/h 75700 l/min	1200/3000	2000	2519	1482	36	1829	1076	60	1035	609	70	-0,85	78	
P/HC	2670 cfm	2200,3000	2400	3084	1815	50	2298	1352	79	1311	772	86	-0,9	98	
			2800	3598	2118	66	2691	1584	92	1587	934	99	-0,93	120	
BLW185 PM	1180 m³/h 19600l/min - 692cfm	700/1200	1200	995	586	13	841	495	22	635	374	28	-0,87	30	
BLW210 PM	1350 m³/h 22600l/min - 798cfm	600/1200	1200	1171	689	16	1014	597	26	803	472	33	-0,88	36	
BLW255 PM	1530 m³/h 25500l/min - 900cfm	700/1200	1200	1320	777	19	1139	670	30	693	408	38	-0,90	42	
BLW270 PM	1770 m³/h 29500l/min - 1040cfm	600/1200	1200	1529	900	23	1365	803	37	1116	657	45	-0,90	50	
BLW300 PM	2000 m³/h 33300l/min - 1177cfm	600/1200	1200	1809	1064	29	1450	853	45	1056	621	54	-0,91	54	
BLW355 PM	2220 m³/h 37000l/min - 1306cfm	700/1200	1200	2023	1190	31	1711	1006	50	1261	742	61	-0,92	66	
BLW400 PM	2570 m³/h 42800l/min - 1511cfm	600/1200	1200	2246	1322	40	1975	1162	56	1615	950	71	-0,93	78	

^{*}QG: Volume displacement at maximum speed / capacidad geométrica a rpm máximas

CONDICIONES DE REFERENCIA

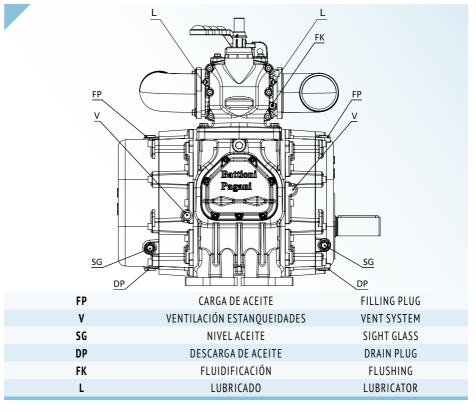
Gas transportado: Aire Temperatura de referencia 20°C (68°F) Presión absoluta de referencia 1013 mbar (14.7 psi) Los datos indicados en la tabla están sujetos a una tolerancia igual a +/- 5%


^{**} Min speed only pressure condition / Velocidad mínima sólo durante la fase de presión Max speed only free flow condition / Velocidad máxima sólo con boca libre

		PRES	SURE			PES0	PESO PESO	PES0	SPL
1,	5 bar (abs)			2 bar (abs)		(P) (PM)	(H)	(HC)	SPL
m³/h	cfm	kw	m³/h	cfm	kw	Kg.	Kg.	Kg.	dB (A)
344	203	7	320	189	13				
426	251	9	384	226	16				
510	300	10	471	277	18	140	150	145	78
569	335	12	531	313	22				
666	392	16	630	371	27				
594	349	12	558	328	21				
744	438	13	708	417	25				
895	527	16	859	506	29	210	240	225	80
1046	616	19	1010	594	35				
1197	704	22	1161	683	40				
794	467	15	752	443	27				
991	583	18	949	558	33				
1187	699	22	1145	674	40	235	270	250	82
1384	815	26	1342	790	46				
1581	930	31	1538	905	56				
966	569	18	828	487	33				
1201	707	21	1090	642	40				
1415	833	25	1325	780	48	270	310	290	84
1622	954	30	1490	877	57				
1822	1072	37	1732	1019	65				
1104	650	22	918	540	43				
1380	812	27	1260	741	50				
1656	975	33	1530	901	60	295	330	315	84
2001	1178	40	1895	1116	73				
2243	1320	55	2056	1210	84				
1973	1161	40	1725	1015	73				
2608	1535	56	2360	1389	96	540			
3109	1830	78	3036	1787	122	510	Not available	540	86
3623	2132	90	3485	2051	145				
1019	600	18	984	579	34	225	Not available	Not available	80
1197	704	22	1161	683	40	225	Not available	Not available	80
1349	794	25	1308	770	45	250	Not available	Not available	82
1581	930	31	1538	905	56	250	Not available	Not available	82
1822	1072	37	1733	1019	65	305	Not available	Not available	84
1981	1165	39	1891	1112	70	330	Not available	Not available	84
2243	1320	55	2057	1210	84	330	Not available	Not available	84

PRESIÓN SONORA (SPL)

Presión sonora de la bomba con silenciador en la inyección y silenciador en la descarga. Condiciones operativas: 80% de la velocidad máxima, vacío al 60% y distancia de 7 metros en campo abierto.


1.4 - Sentido de rotación

No utilizar la bomba BLW con un sentido de rotación diverso al indicado por la flecha.

1.5 - Posición de los tapones

1.6 - Límites de uso

	P1-P2 (BAR)	P2 (BAR REL.)	Т0 (T0 (C°)		(C°)	T2 (C°)	T2-T1 (C°)
MODELO	MAX	MAX	MAX	MIN	MAX	MIN	MAX	MAX
TODOS	1	1	45	-20	45	-20	150	130

P1 (bar) = presión en aspiración

P2 (bar) = presión en descarga

T0 (°C) = temperatura ambiente

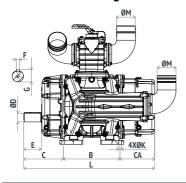
T2 (°C) = temperatura en descarga

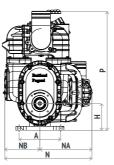
T1 (°C) = temperatura en aspiración

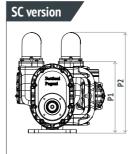
Pares máximos [Nm] aplicables al eje de la máquina para generar movimiento:

- C: par máximo requerido por la máquina a máximo rendimiento
- Cs: par aplicable en fase de arranque (arranque desde parado) = 2,5C
- Ca: par aplicable durante la aceleración (para llevar la máquina a velocidad) = 2C La siguiente tabla identifica estos parámetros para cada familia de máquinas:

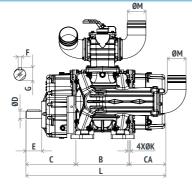
	BLW 140/P	BLW 210-270/P	BLW 300-400/P	BLW 750/P	BLW 185-270/PM	BLW 300-400/PM
C [Nm]	55	150	220	400	450	660
Cs [Nm]	137,5	375	550	1000	1125	1650
Ca [Nm]	110	300	440	800	900	1320

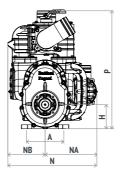

En cualquier caso se prescribe a:

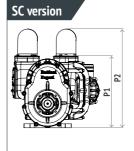

- Evite arranques bruscos con embragues excesivamente rápidos.
- Evite transmisiones directas sin embrague.
- Evite arrancar bajo carga.

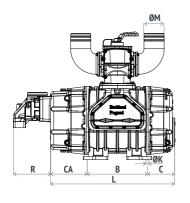


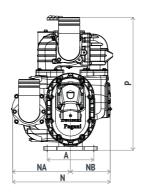
No exceder las condiciones de velocidad y potencia especificadas en el manual durante la operación. ATENCIÓN: el BLW no es adecuado para el transporte de gases tóxicos, inflamables o peligrosos. ATENCIÓN: el BLW estándar no es adecuado para trabajar en ambientes potencialmente explosivos. Para ambientes clasificados potencialmente explosivos utilizar el BLW ATEX. ATENCIÓN: la entrada de sólidos o líquidos daña gravemente el BLW.

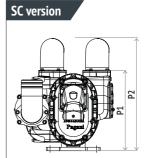

1.7 - Dimensioni di ingombro

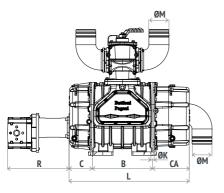


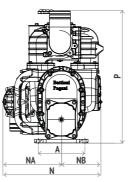


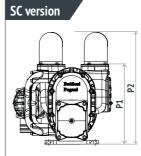

								В	LW/I	P								
MODELO				CA	ØD			G		ØK		ØM		NA			P1	P2
BLW 140	260	277	160	126	38 k6	80	10	41	130	12	563	Ø100- Ø80-Ø3"	411	180	231	568	330	509
BLW 210	260	224	241	206	48 m6	110	14	51,5	150	18	671	Ø100	539	325	214	649	390	565
BLW 270	260	300	238	203	48 m6	110	14	51,5	150	18	741	Ø100	539	325	214	649	390	565
BLW 300	260	274	248	217	55 m8	110	16	59	168	18	739	Ø120-Ø5"	545	325	220	743	435	626
BLW 400	260	354	248	217	55 m6	110	16	59	168	18	819	0120-05"	545	325	220	743	435	626
BLW 750	481	534	250	189	60 m6	140	18	64	201	18	973	DN150 UNI PN6	792	478	314	1005	559	648



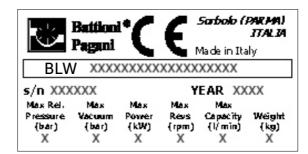



								BL'	W/P	М								
MODELO				CA	ØD			G		ØK		ØM		NA	NB		P1	P2
BLW 185	260	224	314	206	Ø45 k6	96,5	14	48,5	120	Ø18	744	Ø100	540	325	214	650	390	565
BLW 210	260	224	314	206	Ø45 k6	96,5	14	48,5	120	Ø18	744	Ø100	540	325	214	650	390	565
BLW 255	260	300	311	203	Ø45 k6	96,5	14	48,5	120	Ø18	814	Ø100	540	325	214	650	390	565
BLW 270	260	300	311	203	Ø45 k6	96,5	14	48,5	120	Ø18	814	Ø100	540	325	214	650	390	565
BLW 300	260	274	304	217	Ø45 k6	96,5	14	48,5	152,5	Ø18	808	Ø120-Ø5"	565	330	235	745,5	435	626
BLW 355	260	354	304	217	Ø45 k6	96,5	14	48,5	152,5	Ø18	888	Ø120-Ø5"	565	330	235	745,5	435	626
BLW 400	260	354	304	217	Ø45 k6	96,5	14	48,5	152,5	Ø18	888	Ø120-Ø5"	565	330	235	745,5	435	626





							BLW/HC							
MODELO				CA	ØK		ØM		NA	NB			P1	P2
BLW 210	260	224	241	206	18	561	Ø100	539	325	214	649	202	390	565
BLW 270	260	300	238	203	18	631	Ø100	539	325	214	649	202	390	565
BLW 300	260	274	248	217	18	629	Ø120-Ø5"	545	325	220	743	217	435	626
BLW 400	260	354	248	217	18	709	Ø120-Ø5"	545	325	220	743	217	435	626
BLW 750	481	534	250	189	18	833	DN150 UNI PN6	792	478	314	1005	270	559	648



							BLW/H							
MODELO				CA	ØK		ØM		NA	NB			P1	P2
BLW 210	260	277	160	126	12	483	Ø100-Ø80-Ø3"	411	180	231	568	258	330	509
BLW 210	260	224	241	206	18	561	Ø100	539	325	214	649	327	390	565
BLW 270	260	300	238	203	18	631	Ø100	539	325	214	649	327	390	565
BLW 300	260	274	248	217	18	629	Ø120-Ø5"	545	325	220	743	324	435	626
BLW 400	260	354	248	217	18	709	Ø120-Ø5"	545	325	220	743	362	435	626

La bomba de vacío/presión por paletas BLW se suministra con una placa de identificación, en la cual se indican:

- Nombre del modelo
- Número de serie
- Año de fabricación
- Presión máxima relativa
- Vacío máximo
- Potencia máxima absorbida
- Máximo número de giros
- Capacidad máxima
- Marcado CE
- Peso

Cada placa de identificación está protegida con una película especial para quitar un vez pintada.

A tener en cuenta que la pérdida de la etiqueta o la dificultad en la lectura de los datos se traduce en la pérdida de garantía del depresor.

▶ 2.0 - EMBALAJE, ALMACENAMIENTO, MOVILIZACIÓN Y TRANSPORTE

2.1 - Advertencias generales para el usuario y el operador

Antes de poner en funcionamiento la bomba de vacío/presión por paletas, es indispensable que el operador sepa realizar todas las operaciones descritas en el presente manual, y aplicarlas durante el uso o el mantenimiento de la bomba de vacío/presión por paletas. El operador no debe realizar de su propia iniciativa operaciones o intervenciones que no estén contempladas en este manual. Antes de realizar el mantenimiento o la reparación de la bomba es necesario asegurarse de que es imposible iniciar el movimiento de la bomba de vacío/presión por paletas. por lo que es obligatorio desconectar la bomba de las correas si se trata de la versión P o PM o de la instalación hidráulica si se trata de la versión H. Esto es para prevenir el arranque accidental que podría causar lesiones personales y/o daños a la bomba de vacío/presión por paletas.

A partir de los 70°C el usuario deberá instalar y el operador deberá utilizar adecuados dispositivos de protección para prevenir el contacto directo con partes caliente de la bomba por paletas. Antes de realizar trabajos de mantenimiento o de reparación en la bomba por paletas de vacío/presión, se debe dejar que se enfríe a una temperatura inferior a 40°C como mínimo.

2.2 - Embalaje

La bomba de vacío/presión por paletas no se suministra embalada. A pedido se pueden realizar los siguientes embalajes:

- Plataforma de madera y termoretractilado
- Cajas de madera y termoretractilado para expediciones vía aérea o marítima.

2.3 - Almacenamiento

Para una correcta conservación de la bomba de vacío/presión por paletas, la misma se debe almacenar:

Cubierta, a resquardo de los agentes atmosféricos externos:

En posición horizontal, apoyada sobre cuatro patas.

Condiciones climáticas de almacenamiento:

- •Temperatura de -20° C a 40° C.
- Humedad relativa de 10% a 80%.

Para condiciones climáticas diferentes, contactar a la oficina técnica de Battioni Pagani®

El material almacenado en el depósito debe ser protegido periódicamente (cada 6 meses) con aceite protector que debe ser rociado en el interior de la bomba para proteger los rotores y el cuerpo de la bomba.

2.4 - Movilización y transporte

Para ver los datos relativos a la masa de la bomba de vacío/presión por paletas BLW consultar los datos técnicos adjuntos en el párrafo Datos técnicos. La bomba de vacío/presión por paletas BLW debe ser movilizada:

- Exclusivamente usando equipos con capacidad de carga y capacidad adecuada.
- Embragada con una faja.
- Levantada con carretilla elevadora (si es en pallet), puente grúa o grúa.

Desenroscar los tornillos que fijan los 4 pies de la bomba por paletas de vacío/ presión al pallet.

Por razones de seguridad, usar una faja para el levantamiento de la bomba de vacío/presión por paletas. Pasar la faja por debajo de la bomba de vació/presión por paletas, entre las patas de fijación, como se muestra en la figura o entre el cuerpo y el colector cuando sea posible.

Enganchar la faja al equipo de levantamiento.

No permanecer debajo de la bomba durante la movilización.

3.0 - INSTALACIÓN

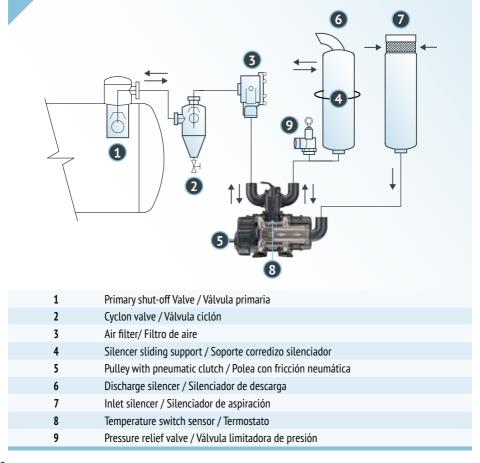
- La bomba BLW debe fijarse verticalmente sobre una superficie horizontal plana con una inclinación máxima de 10° y fijarse con tornillos que bloqueen sus pies.
- Garantizar un espacio suficiente para la circulación del aire de enfriamiento alrededor de la bomba. Evitar la exposición directa a escombros y suciedad.
- Garantizar espacio suficiente para acceder a los niveles de aceite, tapones de descarga de aceite, tapones de relleno de aceite.
- En caso de que la bomba sea pintada de nuevo, asegurarse de no pintar la placa de identificación, los niveles de aceite y los tapones de ventilación.
- Evitar absolutamente la entrada de líquidos o sólidos dentro de la bomba. Por lo tanto es necesario contar con un sistema de autenticación de los líquidos provenientes de la cisterna para evitar su entrada en la zona de bombeo.
- Disponer de un sistema de abatimiento del ruido tanto para el circuito de aire principal como para el de enfriamiento.
- Verificar que el árbol del soplador gire libremente en la dirección esperada (comprobar la flecha en el cárter). La transmisión aplicada debe tener un sentido de rotación coherente.

3.1 - Línea vacío/presión

- Prever un diámetro de las tuberías adecuado a la capacidad manejada por la bomba (velocidad media indicativa 15÷45m/s). Ver tabla de tubos mínimos recomendados.
- Evitar estrangulaciones o reducciones de sección o curvas cerradas.
- Asegurarse de que el peso de las tuberías no recaiga sobre la bomba. Utilizar manguitos de goma resistentes al calor para la conexión, evitando las dilataciones y vibraciones que podrían tensar el cuerpo.
- Dentro del colector que permite seleccionar el modo vacío/presión,hay (en aspiración) una válvula de clapeta que evita la contra-rotación del eje en el momento de la parada.
- En esta línea se recomienda instalar: filtro de aire, válvula ciclón, válvula primaria y las válvulas de seguridad.
- La válvula de clapeta permite mantener el vacío/presión en la cisterna una vez detenida la bomba. Despresurizar las tuberías antes de realizar operaciones.

3.2 - Línea de enfriamiento Ballast

- El sistema de inyección de aire de enfriamiento funciona sólo cuando la bomba está en vacío.
- Instalar el silenciador adecuado lo más cerca posible del colector de inyección y evitar curvas cerradas o reducciones de sección en la tubería.
- No aspirar cerca de fuentes de calor (lejos del silenciador de escape/lejos del tubo de escape del camión). La inyección ineficiente puede causar recalentamiento.
- Limpiar semanalmente la rejilla protectora del silenciador.


3.3 - Versión SC

La versión SC se suministra de serie sin colector de 4 vías y es adecuada para funcionar principalmente en vacío cuando no se necesita trabajar en presión. En caso de que se desee operar también en presión, es necesario instalar una válvula de 4 vías separada. En cualquier caso, prever en la línea de vacío una válvula de retención para evitar la contrarotación de la bomba en caso de bloqueo instantáneo.

Tubos mínimos recomendados

Ø TUBO
Ø 101,6
Ø 101,6
Ø 114,3
Ø 114,3
Ø 114,3
Ø 127
Ø 127
Ø 139,7
Ø 168,3

3.4 - Esquema de instalación

Todas las operaciones de instalación deben ser realizadas con el máximo cuidado por personal debidamente formado y con la toma de fuerza desconectada. Durante la instalación, se recomienda utilizar los equipos de protección personal que se indican a continuación.

3.5 - Procedimiento de instalación

La bomba de vacío/presión por paletas se debe montar e instalar aplicando el siguiente procedimiento:

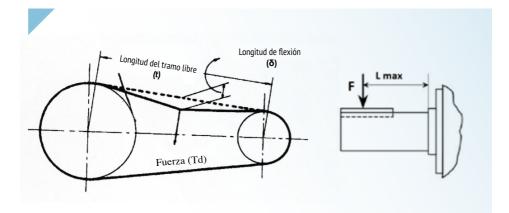
- 1 Montar la bomba de vacío/presión por paletas en posición vertical con los pies dirigidos hacia abaio.
- 2 Atornillar la bomba por paletas de vacío/presión en su lugar utilizando tornillos y tuercas en las ranuras u orificios proporcionados en las patas.
- **3 P/PM)** Para instalar la bomba de vacío/presión BLW versión /P y PM, es necesario montar/fijar una polea conductora en el árbol, la polea conductora debe montarse lo más cerca posible de la toma conductora, tratando de limitar la longitud del tramo libre (véase esquema abajo). En ningún caso se deben transmitir cargas axiales. Conectar la polea conducida a la conductora mediante una correa de transmisión de longitud adecuada. El número y el tipo de correas deben calcularse en función de la potencia que se transmite a la bomba de vacío/presión BLW.

Al finalizar estas operaciones se deben instalar las protecciones adecuadas para aislar los órganos de transmisión (poleas y correas) e impedir el acceso de los operarios.

La tensión ideal es la tensión más baja a la que la correa no patina en condiciones de carga máxima.

Controlar la tensión durante las primeras 24/48 horas de trabajo.

Un exceso de tensión reduce la vida de la correa y del cojinete.


Mantener las correas libres de materiales extraños que puedan causar deslizamiento. Mantener la relación de transmisión contenida permite alargar la vida útil de las correas y los cojinetes.

El diámetro indicado en la tabla es el mínimo de la polea menor.

Adoptar, cuando sea posible, poleas con diámetro primitivo superior a los indicados en las tablas.

Adoptar tomas de fuerza con régimen de rotación lo más cercano posible al de la bomba.

Controlar periódicamente la transmisión. Tensarla cuando patina.

SECCIÓN	FUE	RZA
SECCION	MÍN.	MAX
	Kg.	Kg.
A	0,68	1,02
В	1,58	2,38
C	2,93	4,75

Tensión correa (solo para versión PM)

MODELO	F.MAX (N)	Ø POLEA MÍN. (mm)	L MAX. (MM)	TIPO DE CORREA	N°
BLW 185/PM	6000	200	45	XPB	4
BLW 210/PM	6000	200	45	XPB	4
BLW 255/PM	6000	200	45	XPB	4
BLW 270/PM	6000	250	45	XPB	4
BLW 300/PM	6000	250	45	XPB	4
BLW 355/PM	6000	250	45	XPB	4
BLW 400/PM	6000	300	45	XPB	5

Tensión correa (solo para versión P)

MODELO	F.MAX (N)	Ø POLEA MÍN. (mm)	L MAX. (MM)	TIPO DE CORREA	N°
BLW140-P	1500	160	40	XPB	3
BLW210-P	3100	160	55	XPB	3
BLW270-P	4000	160	55	XPB	3
BLW300-P	3700	200	55	XPB	3
BLW400-P	4700	200	55	XPB	3
BLW750-P	6500	212	75	XPB	6

Para controlar la tensión de las correas en una instalación convencional, seguir el siguiente procedimiento:

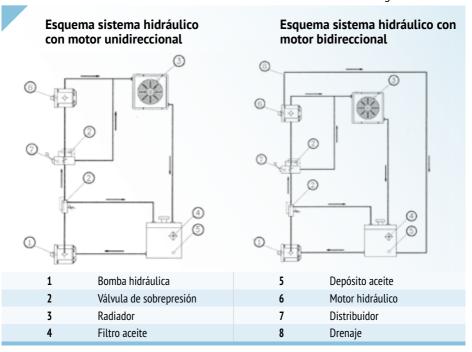
Medir el tramo libre de la correa.t.

En el centro del tramo libre (t) aplicar una fuerza (perpendicular al tramo libre) hasta que la correa flexione 1,6 mm por cada 100 mm de longitud de tramo libré. Por ejemplo, la flexión de un tramo libre de 1000 mm debe ser de 16 mm. Comprobar que la fuerza aplicada y medida es la correcta con un extensiómetro

con los valores dados en la tabla. Si la flexión está entre los valores "fuerza mín." indica una correa con baja tensión. Si la flexión excede el valor de" fuerza máx." la correa está excesivamente tensada. Sin embargo, una nueva correa debe ser tensada el doble respecto de los valores de "fuerza mín." para obtener una tensión adecuada durante el funcionamiento.

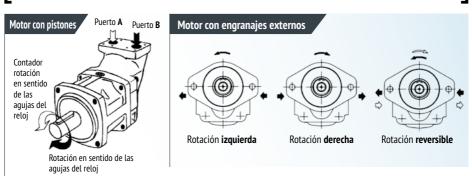
No utilizar la bomba BLW con un sentido de rotación diverso al indicado por la flecha.

H) Para instalar la bomba de vacío/presión por paletas BLW /H, es necesario montar un motor hidráulico en el soporte situado en la parte delantera (si no se suministra ya instalado), fijarlo mediante los tornillos adecuados y conectar las manqueras hidráulicas de la bomba hidráulica al motor hidráulico. Si el motor es bidireccional conectar también el tubo de drenaje.


HC) Para instalar la bomba de vacío/presión por paletas BLW/HC, es necesario fijarla mediante tornillos adecuados y conectar las tuberías hidráulicas de la bomba hidráulica al motor hidráulico. Si el motor es bidireccional conectar también el tubo de drenaje.

A continuación, conectar el tubo de aspiración/compresión de la cisterna a la bomba de vacío/presión por paletas BLW, asegurándolo al manguito mediante una abrazadera metálica de fijación en función del diámetro del tubo.

3.6 - Esquema hidráulico BLW / H / HC


El sistema hidráulico típico para la bomba de vacío/presión BLW/H/HC está esquematizado en la versión con motor bidireccional de cilindrada fija que se presenta a continuación.

Las características técnicas de los motores hidráulicos se indican en las siguientes tablas.

Asegurarse de que el sentido de rotación del motor sea concorde con el sentido de rotación de la bomba indicado por la flecha aplicada cerca del motor hidráulico.

El fabricante del medio o del sistema es responsable del dimensionamiento del sistema hidráulico.

3.7 - Instrucciones de uso y mantenimiento del motor hidráulico

DEPÓSITO - La capacidad del depósito debe estar de acuerdo con las condiciones de funcionamiento del sistema. Para evitar el sobrecalentamiento del líquido, si es necesario, instalar un intercambiado de calor. En el depósito, los conductos de retorno y aspiración deben estar distanciados (interponiendo una mampara vertical) para evitar que el aceite de retorno sea vuelto a aspirar de inmediato.

TUBERÍAS - Las tuberías deben tener un diámetro nominal no inferior al de las bocas del motor y ser perfectamente estancas. Se aconseja interponer en las tuberías un tramo de tubo flexible, para reducir la transmisión de vibraciones. Todas las tuberías de retorno deben acabar por debajo del nivel mínimo de aceite, para evitar formación de espuma.

FILTRACIÓN - Recomendamos una filtración clase 20/18/13 ISO 4406 o superior.

FLUIDO HIDRÁULICO - Motor con Pistones, usar aceites hidráulicos minerales tipo HLP (DIN 51524). Motor con engranajes, usar aceites hidráulicos minerales de acuerdo con las normativas ISO/DIN. Evitar mezclas de aceites diversos que podrían dar origen a una descomposición del aceite y reducir su poder lubricante.

AGUJERO DE DRENAJE - en los motores bidireccionales con aqujero de drenaje es necesario conectar el aquiero con el depósito de aceite con una tubería. Para evitar formación de espuma dentro del depósito, el tubo debe conectarse bajo el nivel mínimo.

PUESTA EN FUNCIONAMIENTO - Asegurarse de que todas las conexiones del sean exactas y que el sistema esté en condición de limpieza absoluta. Introducir el aceite en el depósito usando siempre un filtro. Purgar el circuito para favorecer el rellenado de la instalación. Tarar las válvulas imitadoras de presión al valor más bajo posible. Arrancar la instalación durante unos instantes a la mínima velocidad para purgar nuevamente el circuito y verificar el nivel del aceite en el depósito. Si la diferencia de temperatura entre el motor y la del fluido supera los 10° C, arrancar y parar la instalación por breves periodos de modo de realizar un calentamiento progresivo. Aumentar finalmente de modo gradual la presión y la velocidad de rotación hasta alcanzar los valores de ejercicio previstos que deben mantenerse dentro de los limites del catalogo.

CONTROLES PERIÓDICOS - MANTENIMIENTOS - Mantener la superficie externa limpia. Sustituir el filtro con regularidad para mantener el fluido limpio. El nivel del aceite debe ser controlado y sustituido periódicamente según las condiciones de trabajo de la instalación.

SOLUCIÓN DE LOS PROBLEMAS: Si el circuito está abierto (es decir si en la parte anterior del motor se encuentra el depósito del aceite y no la bomba), en el caso en que el motor continuara a girar aún con el motor apagado no habría sobrepresión, sino cavilación. Para solucionar el problema instalar una válvula unidireccional para llevar el aceite, o una parte del mismo mediante calibrado, de la impulsión del motor a su aspiración para evitar que el motor bombee aire.

- Si el circuito está cerrado, podría haber sobrepresión. Para solucionar el problema, hay dos soluciones posibles, instalar una válvula de seguridad, según recomendamos en el esquema de la instalación adjunto, o una válvula unidireccional calibrada que desvíe parcialmente el motor. En comparación con la primera solución, la segunda es más económica y menos invasiva en una instalación ya existente dado que no necesita otro aquiero en el depósito.

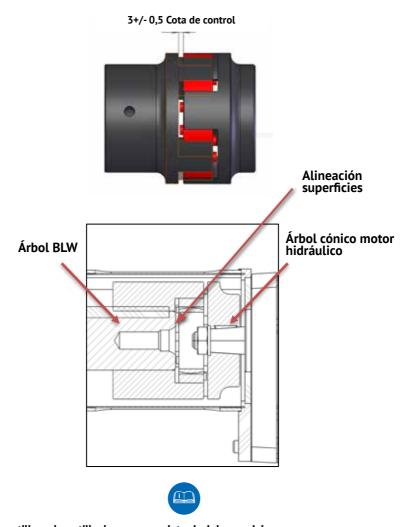
MODELO DEL MOTOR	PRES. MÁX DRENAJE	CLASE FILTRACIÓN	VISCOSIDAD RECOMENDADA	VISCOSIDAD MÁX	T° ACEITE MÁX
VERSIONES PLM/KM	1 BAR	20/18/15 ISO4406	12-30CST	750CST	80
VERSIONES HC PISTONES	1-3 BAR	20/18/13 ISO4406	15-30CST	1000CST	80

BLW.../HC - Hydraulic Motor (PISTON)

ВОМВА	MOTOR	CILINDRADA (cm³/rev)	PRESIÓN DE TRABAJO (bar)	P MÁX CONTINUA (bar)	DIRECCIÓN i O D	BRIDA Entrada/ Salida
BLW 140/HC	F11-012	12,5	270	350	L & R	M26 ISO 9974-1
BLW 210/HC	F12-030	30	230	450	L & R	3/4" ISO 6162-2
BLW 270/HC	F12-030	30	320	450	L&R	3/4" ISO 6162-2
BLW 300/HC	F12-040	40	250	450	L & R	3/4" ISO 6162-2
BLW 400/HC	F12-040	40	350	450	L&R	3/4" ISO 6162-2
BLW 400/HC	F12-060	59,8	230	450	L&R	3/4" ISO 6162-2
BLW 750/HC	F12-090	93	330	350	L&R	1" ISO 6162-2

BLW.../H - Hydraulic Motor (GEAR)

ВОМВА	MOTOR	CILINDRADA ^l (cm³/rev)	PRESIÓN DE TRABAJO (bar)	P MÁX CONTINUA (bar)	RPM MÁX (bar)	DIRECCIÓN i O D	BRIDA ENTRADA/ SALIDA
BLW 140/H	PLM 20,16	16,85	180	250	4000	IYD	G 1/2" - G 3/4"
BLW 210/H	KM 30,43	43,98	170	250	3000	R	G1" - G1"
BLW 270/H	KM 30,43	43,98	220	250	3000	R	G1" - G1"
BLW 300/H	KM 30,43	43,98	240	250	3000	R	G1" - G1"
BLW 400/H	KM 40,73	72,6	200	300	3200	IYD	G1" - G1"1/4



Rotación bomba horaria/antihoraria - Izquierda/Derecha

3.8 - Acoplamiento junta elástica/motor hidráulico

Solo las bombas por paletas BLW-H se suministran con el kit de junta elástica y el motor hidráulico instalado.

En caso de adquirir el kit hidráulico para instalar en la versión BLW-P, fijar el semieje cónico en el motor hidráulico y asegurar con la tuerca adecuada hasta el tope. Posicionar el semieje del lado del árbol BLW alineando las superficies internas del árbol y de la junta. Bloquear el semieje con el tornillo prisionero suministrado.

Atención: utilizar el martillo de goma para introducir los semiejes. Los errores de alineación provocan un desgaste prematuro de los cojinetes y de la junta de conexión elástica.

▶ 4.0 - PRUEBA

4.1 - Prueba

Todas las bombas de vacío/presión por paletas Battioni Pagani® se prueban antes de la entrega en nuestra planta.

ATENCIÓN: No poner en funcionamiento la bomba por paletas de vacío/presión en la dirección de rotación inversa.

▶ 5,0 - ARRANQUE, FUNCIONAMIENTO, PARADA

5.1 - Arranque

Operaciones a realizar antes de cada arranque:

- Verificar el nivel de aceite delantero y trasero.
 Verificar que todas las protecciones de los componentes en movimiento estén presentes y sean eficientes.
- Verificar el sentido de rotación de la bomba a bajas revoluciones abriendo todas las válvulas del sistema.
- Verificar que la línea del vacío/presión y la línea de inyección de aire estén libres de obstrucciones.
- Verificar la ausencia de vibraciones o ruidos metálicos anómalos.

Durante el arranque, funcionamiento y parada se recomienda utilizar los equipos de protección individual que se indican a continuación.

Antes de poner en marcha la bomba de vacío/presión por paletas, asegurarse que las protecciones de todos los órganos en movimiento estén presentes y sean eficientes. Cualquier componente dañado o faltante debe ser reemplazado e instalado correctamente.

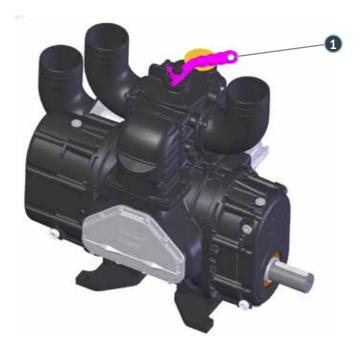
5.2 - Controles diarios a realizar

CONTROL	FRECUENCIA	
PRESIÓN		
TEMPERATURA	ADIADIO	
RUIDOS ANÓMALOS	A DIARIO	
NIVELES DE ACEITE (DELANTERO Y TRASERO)		

Durante las primeras horas de funcionamiento, controlar que no hayan vibraciones ni ruidos anormales. En caso de que haya anomalías, detener inmediatamente la bomba de vacío/presión y contactar con el Servicio de Battioni Pagani®.

5.3 - Precauciones de uso

Operaciones a realizar antes de cada arrangue:


- Verificar el nivel de aceite delantero y trasero.
 Verificar que todas las protecciones de los componentes en movimiento estén presentes y sean eficientes.
- Verificar el sentido de rotación de la bomba a bajas revoluciones abriendo todas las válvulas del sistema.
- Verificar que la línea del vacío/presión y la línea de inyección de aire estén libres de obstrucciones.
- Verificar la ausencia de vibraciones o ruidos metálicos anómalos.

No exceder las condiciones de velocidad y potencia especificadas en el manual durante la operación. ATENCIÓN: el BLW no es adecuado para el transporte de gases tóxicos, inflamables o peligrosos. ATENCIÓN: el BLW estándar no es adecuado para trabajar en ambientes potencialmente explosivos. Para ambientes clasificados potencialmente explosivos utilizar el BLW ATEX. ATENCIÓN: la entrada de sólidos o líquidos daña gravemente el BLW.

5.4 - Dispositivos de mando

Manual: para controlar las fases de aspiración y compresión, hay una manija (1) ubicada en la parte superior del colector, que se puede utilizar manualmente. Para establecer en qué sentido girar la manivela para seleccionar la fase de aspiración o de compresión, seguir las instrucciones proporcionadas por el fabricante del sistema. En caso de bloqueo de la válvula levantar la manija con una palanca.

Neumática: mediante un kit adecuado, es posible instalar un actuador neumático rotativo angular. Recomendamos el uso de tuberías con un diámetro de al menos Ø 6 mm y regular el flujo de aire para que la rotación ocurra en al menos 1 seg. Sugerimos el uso de dos válvulas reguladoras de flujo para evitar velocidades de rotación excesivas (figura abajo). La presión nominal de trabajo es de 5,6 bar y la máxima permitida de 8,4 bar.

Hidráulica: mediante un kit adecuado es posible instalar un actuador hidráulico rotativo angular. El actuador está provisto de dos conexiones roscadas de 1/4" GAS y de dos agujas de regulación del flujo de aceite. El actuador generalmente ya está ajustado de fábrica. La presión de trabajo permitida varía entre 50÷180 bar, se recomienda un valor de trabajo intermedio.

La selección de la fase de aspiración o compresión debe realizarse con la bomba por paletas no accionada.

▶ 6.0 - MANTENIMIENTO

Durante el arranque, funcionamiento y parada se recomienda utilizar los equipos de protección individual que se indican a continuación.

Todas las operaciones de mantenimiento, inspección y controles, reparaciones, deben ser realizadas con la máxima atención y con la toma de fuerza desconectada.

Antes de realizar las operaciones de mantenimiento, se recomienda esperar a que la bomba BLW se enfríe y vuelva a una temperatura inferior a 40° C.

Antes de realizar el mantenimiento, eliminar la presión diferencial de la instalación y llevarla de vuelta a la presión atmosférica.

6.1 - Mantenimiento ordinario/frecuencia

La siguiente tabla indica las operaciones de mantenimiento necesarias para mantener la máquina en perfecta eficiencia.

TIPO DE MANTENIMIENTO	FRECUENCIA
Inspección del nivel de aceite	a diario
Engrasado cono colector	máximo 300 horas de trabajo
Limpieza del Filtro	a diario
Relleno aceite	en caso de necesidad
Sustitución del aceite	1000 horas de trabajo o 12 meses
Sustitución de las guarniciones	en caso de necesidad o cada vez que se abren las partes que contienen las guarniciones
Reemplazo de sellos	en caso de necesidad o en caso de mantenimiento extraordinario
Control de la funcionalidad de la válvula de retención del colector y ballast	12 meses
Sustitución de la válvula de retención del colector y ballast	en caso de necesidad
Limpieza tapones de ventilación estanqueidades	en caso de necesidad

6.2 - Lubricantes sugeridos para la lubricación

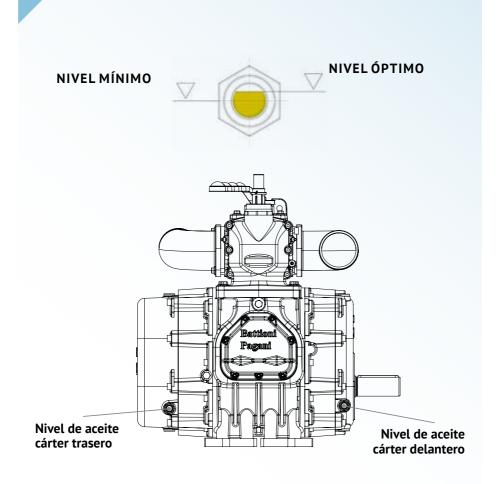
Para lubricar la bomba mediante palas de vacío/presión, se recomienda el uso de un vinagre sintético ISO VG 220 a base de polialfaolefinas para altas temperaturas. Para las pruebas internas realizadas en nuestra planta se utilizó aceite Mobil SHC 630 a base de PAO.

No usar aceite mineral con aditivos EP o aceite sintético a base de siliconas o diésteres.

6.3- INSPECCIÓN DEL NIVEL DE ACEITE

- Verificar cada vez que se utiliza la bomba el nivel del aceite mediante los puntos de inspección del nivel del aceite.
- Repetir la operación tanto en el cárter delantero como en el trasero.
- El nivel del aceite se verifica con la bomba detenida y fría.

6.4 - RELLENO ACEITE


Si, al finalizar un control periódico, el nivel de aceite es bajo, realizar el rellenado.

- Desenrosque y retire el tapón de carga de aceite.
- Rellenar con la cantidad justa de aceite, controlando el nivel desde el punto de inspección del nivel de aceite.
- Atornille el tapón de carga de aceite.
- Repetir la operación tanto en el cárter delantero como en el trasero.

6.5 - SUSTITUCIÓN DEL ACEITE

Cada 1000 horas de trabajo o 12 meses, reemplace el aceite tanto en el cárter delantero como en el cárter trasero.

- Colocar un recipiente específico para la recuperación del aceite agotado debajo de el tapón de descarga aceite.
- Desenrosque y retire el tapón de descarga de aceite.
- Para facilitar la operación de vaciado, desenroscar y quitar el tapón de carga aceite.
- Antes de introducir el aceite en el cárter, compruebe que los tapones de descarga de aceite estén bien cerrados.
- Proceder a la introducción del aceite hasta el nivel preestablecido utilizando un aceite totalmente sintético PAO ISO VG 220.
- Repetir la operación tanto en el cárter delantero como en el trasero.
- Atornille los tapones de carga de aceite.

MODELO	CUANTITATIVO					
MODELO	CÁRTER DELANTERO	CÁRTER TRASERO	TOTAL			
BLW 185-210-255-270 PM	0,80 LITROS	0,80 LITROS	1,6 LITROS			
BLW 300-355-400 PM	0,90 LITROS	0,90 LITROS	1,8 LITROS			
BLW 140 P-H-HC	0,25 LITROS	0,35 LITROS	0,6 LITROS			
BLW 210-270P-H-HC	0,30 LITROS	0,80 LITROS	1,1 LITROS			
BLW 300-400P-H-HC	0,35 LITROS	0,90 LITROS	1,25 LITROS			
BLW 750 P-HC	1,8 LITROS	3,5 LITROS	5,3 LITROS			

Este mantenimiento se realiza generalmente al alcanzar las 10.000 horas de funcionamiento. El mantenimiento extraordinario implica el desmontaje completo de la bomba y la sustitución de todos los sellos estáticos y dinámicos, así como de todos los cojinetes.

Las operaciones de mantenimiento extraordinario deben ser realizadas por personal cualificado y autorizado por Battioni Pagani Pompe.

Las tablas de recambios de todas las bombas se pueden descargar del sitio www.bapag.it

6.7 - Recambios recomendados

Battioni Pagani® ha identificado dos tipos de kits de revisión para cada bomba. Un estándar recomendado para 2 años de trabajo y uno completo recomendado para 5 años de trabajo. En el kit de revisión estándar están:

- Todas las juntas.
- Anillo de retención montado en la toma de fuerza.
- Tapones de carga, descarga y nivel aceite.
- Válvulas batientes de no retorno.

En el kit de revisión completo están los componentes del kit estándar y:

- Todos los cojinetes
- Las juntas de segmentos

Battioni Pagani® declina cualquier responsabilidad por roturas e incidentes debidos al uso de recambios no originales.

6.8 - Desinstalación bomba BLW

La bomba de vacío/presión BLW debe desinstalarse realizando el siguiente procedimiento:

	BLW/H/HC		BLW / P- PM
1	Detener el sistema hidráulico.	1	Detener la transmisión de polea.
2	Quitar las conexiones hidráulicas al motor.	2	Quitar las correas de transmisión.
3	Abrir todas las compuertas para liberar la presión del sistema.	3	Abrir todas las compuertas para liberar la presión del sistema.
4	Quitar el tubo de conexión que conecta la cisterna a la bomba BLW, desenroscando la abrazadera metálica y quitando el tubo del zuncho.	4	Quitar el tubo de conexión que conecta la cisterna a la bomba BLW, desenroscando la abrazadera metálica y quitando el tubo del zuncho.
5	Quitar posibles conexiones hidráulicas o neumáticas.	5	Quitar posibles conexiones hidráulicas o neumáticas.
6	Quitar los tornillos de fijación y desinstalar la Bomba de vacío/presión por paletas BLW.	6	Quitar los tornillos de fijación y desinstalar la Bomba de vacío/presión por paletas BLW.

7.0 - LIMPIEZA

7.1- Lavado del cuerpo

Battioni Pagani® recomienda el uso de Battioni Pagani Flushing Fluid, fluido para la limpieza y la protección de las bombas, estudiado para el mantenimiento de las bombas de vacío/presión Battioni Pagani®.

Realizar un lavado interno con el Flushing Fluid cada 10 horas de trabajo y cada vez que el material entre en la bomba.

Para una correcta conservación de la bomba de vacío/presión por paletas, esta debe ser sometida al lavado del cuerpo antes de cada parada prolongada.

ATENCIÓN: No utilizar agua para el lavado del cuerpo para evitar que se forme oxidación.

▶ 8.0 - DESMONTAJE Y MONTAJE

La bomba de vacío/presión BLW no se puede desmontar durante el período de garantía, de lo contrario perderá su validez. En caso de desmontaje, la eventual reparación y el montaje sólo pueden ser realizados por personal cualificado y autorizado. Este manual sólo proporciona instrucciones para el mantenimiento ordinario. Los daños causados por operaciones incorrectas durante el desmontaje y el montaje del BLW no están cubiertos por la garantía.

8.1- Desmontaje

Durante las operaciones de desmontaje y montaje se recomienda utilizar los equipos de protección individual que se indican a continuación.

Todas las operaciones de desmontaje deben realizarse con el máximo cuidado y con la toma de fuerza desconectada.

Antes de realizar el desmontaje, eliminar la presión diferencial de la instalación y colocarla a la presión atmosférica.

Antes de realizar las operaciones de desmontaje, se recomienda esperar a que la bomba BLW se enfríe y vuelva a una temperatura inferior a 40° C.

8.2 Desmontaje del cárter delantero

- Vaciar el aceite del cárter delantero.
- Desenrosque los tornillos de fijación de la tapa de la caja multiplicadora.

8.3 Desmontaje del cárter trasero

- Vaciar el aceite del cárter trasero.
- Desenrosque los tornillos de fijación del cárter.

8.4 - Montaje

Antes de volver a montar el cárter delantero o el trasero, limpie bien todas las piezas y engrase las que deban deslizarse unas sobre otras.

8.5- Montaje del cárter delantero

- Monte el cárter delantero con la interposición de una guarnición nueva en el medio.
- Fije el cárter delantero con los tornillos.
- Lubrique el labio de estanqueidad y el compartimiento deslizante del eje con grasa.
- Montar el sello en el cárter delantero utilizando un tampón apropiado para no dañar el labio del sello.
- Vuelva a colocar el nivel de aceite en su medida.

8.6 - Montaje del cárter trasero

- Monte el cárter trasero con la interposición de una quarnición nueva en el medio.
- Fije el cárter con los tornillos.
- Vuelva a colocar el nivel de aceite en su medida.

▶ 9.0 - MAL FUNCIONAMIENTO / DAÑO / AVERÍA

PROBLEMAS	CAUSA	SOLUCIONES	
	Infiltraciones o salida de aire de la instalación.	Controlar instalación.	
	Cono inversor mal posicionado.	Posicionar el cono correctamente.	
Poco o ningún vacío o	La bomba gira al contrario.	Invertir el sentido de rotación.	
presión	Los tubos están mal colocados.	Controlar instalación.	
	La válvula de retención ballast no funciona.	Controlar la válvula de retención.	
	Filtro obstruido.	Limpiar el filtro.	
	Presión excesiva	Reducir presión.	
Evensiva calentamiento de	Vacío excesivo.	Reducir vacío.	
Excesivo calentamiento de	Tiempo de funcionamiento excesivo.	Girar la bomba con boca libre.	
la bomba de vacío/presión	Conducto ballast obstruido.	Controlar el correcto funcionamiento de la instala-	
por paletas		ción ballast (tope + silenciador + tubería + válvula).	
	Filtro obstruido.	Limpiar el filtro.	
Salida de líquido bombeado en cisterna del silenciador	Mal funcionamiento válvula primaria y secundaria Válvula secundaria llena.	Controlar las válvulas Vaciar válvula secundaria.	
La bomba BLW gira al contra- rio al final del ciclo de trabajo	La válvula de retención no funciona.	Arreglar la válvula de retención.	
Toma de fuerza no gira	Un cuerpo extraño ha penetrado en la cámara de bombeo.	Retirar el cuerpo extraño a través de la puerta de inspección de los rotores.	
	Rotores pegados.	Abrir la puerta y lavar con líquido desincrustante.	

▶ 10.0 - ASISTENCIA TÉCNICA

Para la asistencia técnica y el suministro de accesorios y repuestos dirigirse a los distribuidores autorizados Battioni Pagani®.

▶ 11.0 - PUESTA FUERA DE SERVICIO Y DESGUACE

Antes del desquace de la bomba de vacío/presión por paletas BLW se deben subdividir los siguientes materiales:

- aceite de lubricación;
- partes de goma y plástico;
- partes de fundición y acero;
- partes de aluminio:
- una vez clasificadas y subdivididas, las piezas deben eliminarse de forma adecuada respetando la normativa vigente.

No arrojar la bomba de vacío/presión por paletas en el medio ambiente. Para la eliminación del aceite de lubricación, usar servicios especializados de tratamiento de residuos industriales.

Eliminar el aceite usado de acuerdo con las prescripciones locales vigentes.

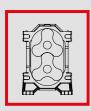
MATERIALES							
BLW	FUNDICIÓN	ACERO	ALUMINIO	ACEITE	PINTURA	CELULOSA	GOMA
DLVV	84 %	15 %	5 %	1 %	0,10 %	0,10 %	0,10 %

Battioni Pagani®, si riserva il diritto di approntare modifiche ai dati e alle caratteristiche illustrate nel catalogo. La riproduzione anche parziale del presente catalogo è vietata ai termini di legge.

Battioni Pagani® reserve the right to modify without notice the data features shown in this catalogue. The reproduction, even partial of this catalogue is fobidden by law.

6	19.09.2025	EMISSIONE	PROG	R DT	AM
5	13.09.2024	EMISSIONE	PROG	R DT	AM
4	03.06.2022	EMISSIONE	PROG	R DT	AM
3	20.11.2021	EMISSIONE	PROG	R DT	AM
2	15.10.2020	EMISSIONE	PROG	R DT	AM
1	28.04.2020	EMISSIONE	PROG	R DT	AM
0	03.06.2019	EMISSIONE	PROG	R DT	AM
Rev.	Data	Motivo	Preparato	Approvato	Autorizzato

Rotary vanes vacuum pump


Centrifugal pump

Roray positive displacement lobes pump

Roray positive displacement lobes pump

Roray lobes vacuum pump

Setting the pace since 1953

Battioni Pagani Pompe S.p.A. Via Ferrari N. 2 43058 Sorbolo Mezzani (PR) - Italy

Ph. +39 0521 663203

www.bapag.it info@bapag.it

Rev. 6 del 19/09/2025 © Battioni Pagani Pompe S.p.A. All rights reserved.